- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Arif, A. M. (1)
-
Birk, Jonas (1)
-
Blackmore, W. J. A. (1)
-
Blundell, S. J. (1)
-
Brambleby, J. (1)
-
Chen, Y-S (1)
-
Chen, YS (1)
-
Clark, S. J. (1)
-
Culp, J (1)
-
Dai, Pengcheng (1)
-
Goddard, P. A. (1)
-
Gong, Dongliang (1)
-
Han, Fei (1)
-
Johnson, R. D. (1)
-
Kaduk, JA (1)
-
Lancaster, T. (1)
-
Lapidus, S (1)
-
Lapidus, S. (1)
-
Lapidus, S. H. (1)
-
Lees, M. R. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The structure of Ni(3-amino-4,4′-bipyridine)[Ni(CN)4] (or known as Ni-BpyNH2) in powder form was determined using synchrotron X-ray diffraction and refined using the Rietveld refinement technique (R= 8.8%). The orthorhombic (Cmca) cell parameters were determined to bea= 14.7218(3) Å,b= 22.6615(3) Å,c= 12.3833(3) Å,V= 4131.29(9) Å3, andZ= 8. Ni-BpyNH2forms a 3-D network, with a 2-D Ni(CN)4net connecting to each other via the BpyNH2ligands. There are two independent Ni sites on the net. The 2-D nets are connected to each other via the bonding of the pyridine “N” atom to Ni2. The Ni2 site is of six-fold coordination to N with relatively long Ni2–N distances (average of 2.118 Å) as compared to the four-fold coordinated Ni1–C distances (average of 1.850 Å). The Ni(CN)4net is arranged in a wave-like fashion. The functional group, –NH2, is disordered and was found to be in them-position relative to the N atom of the pyridine ring. Instead of having a unique position, N has ¼ site occupancy in each of the fourm-positions. The powder reference diffraction pattern for Ni-BpyNH2was prepared and submitted to the Powder Diffraction File (PDF) at the International Centre of Diffraction Data (ICDD).more » « less
-
Gong, Dongliang; Xie, Tao; Zhang, Rui; Birk, Jonas; Niedermayer, Christof; Han, Fei; Lapidus, S. H.; Dai, Pengcheng; Li, Shiliang; Luo, Huiqian (, Physical Review B)
-
Blackmore, W. J. A.; Brambleby, J.; Lancaster, T.; Clark, S. J.; Johnson, R. D.; Singleton, J.; Ozarowski, A.; Schlueter, J. A.; Chen, Y-S; Arif, A. M.; et al (, New Journal of Physics)Abstract Although low-dimensionalS = 1 antiferromagnets remain of great interest, difficulty in obtaining high-quality single crystals of the newest materials hinders experimental research in this area. Polycrystalline samples are more readily produced, but there are inherent problems in extracting the magnetic properties of anisotropic systems from powder data. Following a discussion of the effect of powder-averaging on various measurement techniques, we present a methodology to overcome this issue using thermodynamic measurements. In particular we focus on whether it is possible to characterise the magnetic properties of polycrystalline, anisotropic samples using readily available laboratory equipment. We test the efficacy of our method using the magnets [Ni(H2O)2(3,5-lutidine)4](BF4)2and Ni(H2O)2(acetate)2(4-picoline)2, which have negligible exchange interactions, as well as the antiferromagnet [Ni(H2O)2(pyrazine)2](BF4)2, and show that we are able to extract the anisotropy parameters in each case. The results obtained from the thermodynamic measurements are checked against electron-spin resonance and neutron diffraction. We also present a density functional method, which incorporates spin–orbit coupling to estimate the size of the anisotropy in [Ni(H2O)2(pyrazine)2](BF4)2.more » « less
An official website of the United States government
